Staff profile
Overview
https://apps.dur.ac.uk/biography/image/686
Affiliation |
---|
Senior Manager X-Ray Service in the Department of Chemistry |
Publications
Chapter in book
- STERICALLY CROWDED σ‐ AND π‐BONDED METAL ARYL COMPLEXES
Martinez, G. E., Killion, J. A., Jackson, B. J., Fout, A. R., Petel, B. E., Matson, E. M., Gridley, B. M., Moxey, G. J., Kays, D. L., Bryan, A. M., Power, P. P., Erickson, J. D., Riparetti, R., Power, P. P., Blundell, T. J., Ramos, A. M. G., Sharpe, H. R., Kays, D. L., Abraham, M. Y., Smith, J. C., …Ellis, J. E. (2018). STERICALLY CROWDED σ‐ AND π‐BONDED METAL ARYL COMPLEXES. In P. P. Power (Ed.), Inorganic Syntheses, Volume 37 (47-83). Wiley. https://doi.org/10.1002/9781119477822.ch4
Journal Article
- A Series of Enantiopure BEDT-TTF-acetamide Derivatives with Two Stereogenic Centres.
Wallis, J. D., Martin, L., Ogar, J., Short, J. I., Rusbridge, E. K., Yang, S., & Blundell, T. J. (in press). A Series of Enantiopure BEDT-TTF-acetamide Derivatives with Two Stereogenic Centres. New Journal of Chemistry, https://doi.org/10.1039/d4nj03967j - High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data Statistics
Okui, A., Tsuchiya, R., Nakane, D., Akitsu, T., & Blundell, T. J. (2025). High-Temperature X-Ray Crystal Structure Analysis of Schiff Base Cu(II) and Ni(II) Complexes and Data Statistics. Molecules, 30(6), Article 1289. https://doi.org/10.3390/molecules30061289 - Intercalation of Neutral Guests in Pillared Salt Cocrystals of 5‑Ureidosalyclic Acid
Kennedy, S. R., Blundell, T. J., Henderson, E. F., Miquelot, A. P., & Steed, J. W. (2025). Intercalation of Neutral Guests in Pillared Salt Cocrystals of 5‑Ureidosalyclic Acid. Crystal Growth and Design, 25(5), 1614-1621. https://doi.org/10.1021/acs.cgd.4c01715 - Radical-cation salts of BEDT-TTF with tris-coordinated racemic dysprosium(iii) and terbium(iii) anions
Howarth, E., Lopez, J., Ogar, J. O., Blundell, T. J., Akutsu, H., Nakazawa, Y., Imajo, S., Ihara, Y., Coles, S. J., Horton, P. N., Christensen, J., & Martin, L. (2025). Radical-cation salts of BEDT-TTF with tris-coordinated racemic dysprosium(iii) and terbium(iii) anions. Dalton Transactions, 34(8), 3207-3215. https://doi.org/10.1039/d4dt03484h - 2D Quantum Spin-Liquid Candidate Including a Chiral Anion: κ-(BEDT-TTF)2[BR/S(salicylate)2]
Blundell, T. J., Sneade, K., Ogar, J. O., Yamashita, S., Akutsu, H., Nakazawa, Y., Yamamoto, T., & Martin, L. (2025). 2D Quantum Spin-Liquid Candidate Including a Chiral Anion: κ-(BEDT-TTF)2[BR/S(salicylate)2]. Journal of the American Chemical Society, 147(7), 5658-5668. https://doi.org/10.1021/jacs.4c12386 - Spontaneous Resolution of the Fe(C2O4)3 Anion and Inclusion of Chiral Guest Molecules in BEDT-TTF Radical-Cation Salts
Ogar, J. O., Wallis, J. D., Blundell, T. J., Rusbridge, E. K., Mantle, A., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2025). Spontaneous Resolution of the Fe(C2O4)3 Anion and Inclusion of Chiral Guest Molecules in BEDT-TTF Radical-Cation Salts. Inorganic Chemistry, 64(2), 1075-1084. https://doi.org/10.1021/acs.inorgchem.4c04622 - S ‐Aryl Substitution Enhances Acidity of the 1,2,4‐Triazolium Scaffold
Smith, M. S., Blundell, T. J., Hickson, I., & O'Donoghue, A. C. (2024). S ‐Aryl Substitution Enhances Acidity of the 1,2,4‐Triazolium Scaffold. European Journal of Organic Chemistry, 27(45), Article e202400753. https://doi.org/10.1002/ejoc.202400753 - Chiral and racemic BINOL spiroborate anions and radical-cation salt with BEDT-TTF
Ogar, J. O., Blundell, T. J., Usman, R., Vavrovič, M., & Martin, L. (2024). Chiral and racemic BINOL spiroborate anions and radical-cation salt with BEDT-TTF. Polyhedron, 264, Article 117262. https://doi.org/10.1016/j.poly.2024.117262 - Netting Crystal Nuclei in Metal–Organic Framework Cavities
Braschinsky, A., Blundell, T. J., & Steed, J. W. (2024). Netting Crystal Nuclei in Metal–Organic Framework Cavities. Small Structures, 5(12), Article 2400300. https://doi.org/10.1002/sstr.202400300 - Crystalline Molecular Cleft Clathrates
Lynch, A. V., Blundell, T. J., & Steed, J. W. (2024). Crystalline Molecular Cleft Clathrates. Crystal Growth and Design, 24(17), 7271-7277. https://doi.org/10.1021/acs.cgd.4c00928 - Spin density waves and ground state helices in EuGa2.4Al1.6
Littlehales, M. T., Moody, S. H., Bereciartua, P. J., Mayoh, D. A., Parkin, Z. B., Blundell, T. J., Unsworth, E., Francoual, S., Balakrishnan, G., Alba Venero, D., & Hatton, P. D. (2024). Spin density waves and ground state helices in EuGa2.4Al1.6. Physical Review Research, 6(3), Article L032015. https://doi.org/10.1103/physrevresearch.6.l032015 - BEDT-TTF radical-cation salts with tris(oxalato)chromate and guest additives
Blundell, T. J., Ogar, J. O., Brannan, M. J., Rusbridge, E. K., Wallis, J. D., Akutsu, H., …Martin, L. (2024). BEDT-TTF radical-cation salts with tris(oxalato)chromate and guest additives. RSC Advances, 14(26), 18444-18452. https://doi.org/10.1039/d4ra03425b - Introduction of new guest molecules into BEDT-TTF radical-cation salts with tris(oxalato)ferrate
Blundell, T. J., Rusbridge, E. K., Pemberton, R. E., Brannan, M. J., Morritt, A. L., Ogar, J. O., Wallis, J. D., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2024). Introduction of new guest molecules into BEDT-TTF radical-cation salts with tris(oxalato)ferrate. CrystEngComm, 26(14), 1962-1975. https://doi.org/10.1039/d4ce00099d - Quantitative Raman microscopy to describe structural organisation in hollow microcrystals built from silicon catecholate and amines
Volkov, V. V., Blundell, T. J., Argent, S., & Perry, C. C. (2023). Quantitative Raman microscopy to describe structural organisation in hollow microcrystals built from silicon catecholate and amines. Dalton Transactions, 52(21), 7249-7257. https://doi.org/10.1039/d3dt00856h - Superconductivity and Fermi Surface Studies of β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-Crown-6
Laramee, B., Ghimire, R., Graf, D., Martin, L., Blundell, T. J., & Agosta, C. C. (2023). Superconductivity and Fermi Surface Studies of β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-Crown-6. Magnetochemistry, 9(3), Article 64. https://doi.org/10.3390/magnetochemistry9030064 - Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)gallate and tris(oxalato)iridate
Blundell, T. J., Morritt, A. L., Rusbridge, E. K., Quibell, L., Oakes, J., Akutsu, H., Nakazawa, Y., Imajo, S., Kadoya, T., Yamada, J.-I., Coles, S. J., Christensen, J., & Martin, L. (2022). Molecular conductors from bis(ethylenedithio)tetrathiafulvalene with tris(oxalato)gallate and tris(oxalato)iridate. Materials Advances, 3(11), 4724-4735. https://doi.org/10.1039/d2ma00384h - Enantiopure and racemic radical-cation salts of B(mandelate)2− and B(2-chloromandelate)2− anions with BEDT-TTF
Blundell, T. J., Lopez, J. R., Sneade, K., Wallis, J. D., Akutsu, H., Nakazawa, Y., Coles, S. J., Wilson, C., & Martin, L. (2022). Enantiopure and racemic radical-cation salts of B(mandelate)2− and B(2-chloromandelate)2− anions with BEDT-TTF. Dalton Transactions, 51(12), 4843-4852. https://doi.org/10.1039/d2dt00024e - Slow magnetic relaxation in Fe(ii) m-terphenyl complexes
Valentine, A. J., Geer, A. M., Blundell, T. J., Tovey, W., Cliffe, M. J., Davies, E. S., Argent, S. P., Lewis, W., McMaster, J., Taylor, L. J., Reta, D., & Kays, D. L. (2022). Slow magnetic relaxation in Fe(ii) m-terphenyl complexes. Dalton Transactions, 51(47), 18118-18126. https://doi.org/10.1039/d2dt03531f - Exceptionally high temperature spin crossover in amide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complex revealed by variable temperature Raman spectroscopy and single crystal X-ray diffraction
Attwood, M., Akutsu, H., Martin, L., Blundell, T. J., Le Maguere, P., & Turner, S. S. (2021). Exceptionally high temperature spin crossover in amide-functionalised 2,6-bis(pyrazol-1-yl)pyridine iron(ii) complex revealed by variable temperature Raman spectroscopy and single crystal X-ray diffraction. Dalton Transactions, 50(34), 11843-11851. https://doi.org/10.1039/d1dt01743h - First Molecular Superconductor with the Tris(Oxalato)Aluminate Anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and Isostructural Tris(Oxalato)Cobaltate and Tris(Oxalato)Ruthenate Radical Cation Salts
Blundell, T., Brannan, M., Mburu-Newman, J., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2021). First Molecular Superconductor with the Tris(Oxalato)Aluminate Anion, β″-(BEDT-TTF)4(H3O)Al(C2O4)3·C6H5Br, and Isostructural Tris(Oxalato)Cobaltate and Tris(Oxalato)Ruthenate Radical Cation Salts. Magnetochemistry, 7(7), Article 90. https://doi.org/10.3390/magnetochemistry7070090 - Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−
Blundell, T. J., Brannan, M., Nishimoto, H., Kadoya, T., Yamada, J.-I., Akutsu, H., Nakazawa, Y., & Martin, L. (2021). Chiral metal down to 4.2 K - a BDH-TTP radical-cation salt with spiroboronate anion B(2-chloromandelate)2−. Chemical Communications, 57(44), 5406-5409. https://doi.org/10.1039/d1cc01441b - Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituents
Short, J., Blundell, T. J., Yang, S., Sahin, O., Shakespeare, Y., Smith, E. L., Wallis, J. D., & Martin, L. (2020). Synthesis and structures of polyiodide radical cation salts of donors combining tetrathiafulvalene with multiple thiophene or oligo-thiophene substituents. CrystEngComm, 22(40), 6632-6644. https://doi.org/10.1039/d0ce00954g - Chiral molecular conductor with an insulator–metal transition close to room temperature
Short, J. I., Blundell, T. J., Krivickas, S. J., Yang, S., Wallis, J. D., Akutsu, H., Nakazawa, Y., & Martin, L. (2020). Chiral molecular conductor with an insulator–metal transition close to room temperature. Chemical Communications, 56(66), 9497-9500. https://doi.org/10.1039/d0cc04094k - A transition metal–gallium cluster formedviainsertion of “GaI”
Blundell, T. J., Taylor, L. J., Valentine, A. J., Lewis, W., Blake, A. J., McMaster, J., & Kays, D. L. (2020). A transition metal–gallium cluster formedviainsertion of “GaI”. Chemical Communications, 56(58), 8139-8142. https://doi.org/10.1039/d0cc03559a - Azamacrocycles and tertiary amines can be used to form size tuneable hollow structures or monodisperse oxide nanoparticles depending on the ‘M’ source
Tilburey, G. E., Blundell, T. J., Argent, S. P., & Perry, C. C. (2019). Azamacrocycles and tertiary amines can be used to form size tuneable hollow structures or monodisperse oxide nanoparticles depending on the ‘M’ source. Dalton Transactions, 48(41), 15470-15479. https://doi.org/10.1039/c9dt02080b - 2D Molecular Superconductor to Insulator Transition in the β′′-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir)
Morritt, A. L., Lopez, J. R., Blundell, T. J., Canadell, E., Akutsu, H., Nakazawa, Y., Imajo, S., & Martin, L. (2019). 2D Molecular Superconductor to Insulator Transition in the β′′-(BEDT-TTF)2[(H2O)(NH4)2M(C2O4)3]·18-crown-6 Series (M = Rh, Cr, Ru, Ir). Inorganic Chemistry, 58(16), 10656-10664. https://doi.org/10.1021/acs.inorgchem.9b00292 - Dehydrocoupling of dimethylamine–borane promoted by manganese(ii) m-terphenyl complexes
Sharpe, H. R., Geer, A. M., Blundell, T. J., Hastings, F. R., Fay, M. W., Rance, G. A., Lewis, W., Blake, A. J., & Kays, D. L. (2018). Dehydrocoupling of dimethylamine–borane promoted by manganese(ii) m-terphenyl complexes. Catalysis Science & Technology, 8(1), 229-235. https://doi.org/10.1039/c7cy02086d - Selective reduction and homologation of carbon monoxide by organometallic iron complexes
Sharpe, H. R., Geer, A. M., Taylor, L. J., Gridley, B. M., Blundell, T. J., Blake, A. J., Davies, E. S., Lewis, W., McMaster, J., Robinson, D., & Kays, D. L. (2018). Selective reduction and homologation of carbon monoxide by organometallic iron complexes. Nature Communications, 9(1), Article 3757. https://doi.org/10.1038/s41467-018-06242-w - Cyclotrimerisation of isocyanates catalysed by low-coordinate Mn(ii) and Fe(ii) m-terphenyl complexes
Sharpe, H. R., Geer, A. M., Williams, H. E. L., Blundell, T. J., Lewis, W., Blake, A. J., & Kays, D. L. (2017). Cyclotrimerisation of isocyanates catalysed by low-coordinate Mn(ii) and Fe(ii) m-terphenyl complexes. Chemical Communications, 53(5), 937-940. https://doi.org/10.1039/c6cc07243g - Ligand influences on homoleptic Group 12 m-terphenyl complexes
Blundell, T. J., Hastings, F. R., Gridley, B. M., Moxey, G. J., Lewis, W., Blake, A. J., & Kays, D. L. (2014). Ligand influences on homoleptic Group 12 m-terphenyl complexes. Dalton Transactions, 43(38), 14257-14264. https://doi.org/10.1039/c4dt00647j - Cubane and dicubane complexes stabilised by sterically demanding m-terphenyl ligands
Gridley, B. M., Moxey, G. J., Blundell, T. J., Lewis, W., Blake, A. J., & Kays, D. L. (2013). Cubane and dicubane complexes stabilised by sterically demanding m-terphenyl ligands. Chemical Communications, 49(84), 9752-9754. https://doi.org/10.1039/c3cc46384b